The Collatz Conjecture is the simplest math problem no one can solve — it is easy enough for almost anyone to understand but notoriously difficult to solve. This video is sponsored by Brilliant. The first 200 people to sign up via https://brilliant.org/veritasium get 20% off a yearly subscription.
Special thanks to Prof. Alex Kontorovich for introducing us to this topic, filming the interview, and consulting on the script and earlier drafts of this video.
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
References:
Lagarias, J. C. (2006). The 3x+ 1 problem: An annotated bibliography, II (2000-2009). arXiv preprint math/0608208. — https://ve42.co/Lagarias2006
Lagarias, J. C. (2003). The 3x+ 1 problem: An annotated bibliography (1963–1999). The ultimate challenge: the 3x, 1, 267-341. — https://ve42.co/Lagarias2003
Tao, T (2020). The Notorious Collatz Conjecture — https://ve42.co/Tao2020
A. Kontorovich and Y. Sinai, Structure Theorem for (d,g,h)-Maps, Bulletin of the Brazilian Mathematical Society, New Series 33(2), 2002, pp. 213-224.
A. Kontorovich and S. Miller Benford’s Law, values of L-functions and the 3x+1 Problem, Acta Arithmetica 120 (2005), 269-297.
A. Kontorovich and J. Lagarias Stochastic Models for the 3x + 1 and 5x + 1 Problems, in “The Ultimate Challenge: The 3x+1 Problem,” AMS 2010.
Tao, T. (2019). Almost all orbits of the Collatz map attain almost bounded values. arXiv preprint arXiv:1909.03562. — https://ve42.co/Tao2019
Conway, J. H. (1987). Fractran: A simple universal programming language for arithmetic. In Open problems in Communication and Computation (pp. 4-26). Springer, New York, NY. — https://ve42.co/Conway1987