Study shows promising material can store solar energy for months or years


by

As we move away from fossil fuels and shift to renewable energy to tackle climate change, the need for new ways to capture and store energy becomes increasingly important.

Lancaster University researchers studying a have discovered it has properties that allow it to capture energy from the sun. The energy can be stored for several months at room temperature, and it can be released on demand in the form of heat.

With further development, these kinds of materials could offer exciting potential as a way of capturing solar energy during the summer months, and storing it for use in winter—where less solar energy is available.

This would prove invaluable for applications such as heating systems in off-grid systems or remote locations, or as an environmentally-friendly supplement to conventional heating in houses and offices. It could potentially also be produced as a thin coating and applied to the surface of buildings, or used on the windscreens of cars where the stored heat could be used to de-ice the glass in freezing winter mornings.

The material is based on a type of ‘metal-organic framework’ (MOF). These consist of a network of metal ions linked by carbon-based molecules to form 3-D structures. A key property of MOFs is that they are porous, meaning that they can form by hosting other small molecules within their structures.

The Lancaster research team set out to discover if a MOF composite, previously prepared by a separate research team at Kyoto University in Japan and known as ‘DMOF1’, can be used to store energy—something not previously researched.

The MOF pores were loaded with molecules of azobenzene—a compound that strongly absorbs light. These molecules act as photoswitches, which are a type of ‘molecular machine’ that can change shape when an external stimulus, such as light or heat, is applied.

In tests, the researchers exposed the material to UV light, which causes the azobenzene molecules to change shape to a strained configuration inside the MOF pores. This process stores the energy in a similar way to the potential energy of a bent spring. Importantly, the narrow MOF pores trap the azobenzene molecules in their strained shape, meaning that the potential energy can be stored for long periods of time at room temperature.[…]

Continue reading: Study shows promising material can store solar energy for months or years

Unknown's avatar

About agogo22

Director of Manchester School of Samba at http://www.sambaman.org.uk
This entry was posted in Design and tagged , , , . Bookmark the permalink.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.